Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(2): e0263454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35130334

RESUMO

Stable isotope ratios are used to reconstruct animal diet in trophic ecology via mixing models. Several assumptions of stable isotope mixing models are critical, i.e., constant trophic discrimination factor and isotopic equilibrium between the consumer and its diet. The isotopic turnover rate (λ and its counterpart the half-life) affects the dynamics of isotopic incorporation for an organism and the isotopic equilibrium assumption: λ involves a time lag between the real assimilated diet and the diet estimated by mixing models at the individual scale. Current stable isotope mixing model studies consider neither this time lag nor even the dynamics of isotopic ratios in general. We developed a mechanistic framework using a dynamic mixing model (DMM) to assess the contribution of λ to the dynamics of isotopic incorporation and to estimate the bias induced by neglecting the time lag in diet reconstruction in conventional static mixing models (SMMs). The DMM includes isotope dynamics of sources (denoted δs), λ and frequency of diet-switch (ω). The results showed a significant bias generated by the SMM compared to the DMM (up to 50% of differences). This bias can be strongly reduced in SMMs by averaging the isotopic variations of the food sources over a time window equal to twice the isotopic half-life. However, the bias will persist (∼15%) for intermediate values of the ω/λ ratio. The inferences generated using a case study highlighted that DMM enhanced estimates of consumer's diet, and this could avoid misinterpretation in ecosystem functioning, food-web structure analysis and underlying biological processes.


Assuntos
Dieta , Comportamento Alimentar/fisiologia , Cadeia Alimentar , Isótopos/farmacocinética , Animais , Comportamento Animal/fisiologia , Simulação por Computador , Ecossistema , Meia-Vida , Estatística como Assunto
2.
Sci Total Environ ; 658: 638-649, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30580218

RESUMO

Pollution greatly impacts ecosystems health and associated ecological functions. Persistent Organic Pollutants (POPs) are among the most studied contaminants due to their persistence, bioaccumulation, and toxicity potential. Biomagnification is often described using the estimation of a Trophic Magnification Factor (TMF). This estimate is based on the relationship between contamination levels of the species and their trophic level. However, while the estimation can be significantly biased in relation to multiple sources of uncertainty (e.g. species physiology, measurement errors, food web complexity), usual TMF estimation methods typically do not allow accounting for these potential biases. More accurate and reliable assessment tool of TMFs and their associated uncertainty are therefore needed in order to appropriately guide chemical pollution management. The present work proposes a relevant and innovative TMF estimation method accounting for its many variability sources. The ESCROC model (EStimating Contaminants tRansfers Over Complex food webs), which is implemented in a Bayesian framework, allows for a more reliable and rigorous assessment of contaminants trophic magnification, in addition to accurate estimations of isotopes trophic enrichment factors and their associated uncertainties in food webs. Similar to classical mixing models used in food web investigations, ECSROC computes diet composition matrices using isotopic composition data while accounting for contamination data, leading to more robust food web descriptions. As a demonstration of the practical application of the model, ESCROC was implemented to revisit the trophic biomagnification of 5 polyfluoroalkyl substances (PFAS) in a complex estuarine food web (the Gironde, SW France). In addition to the TMF estimate and 95% confidence intervals, the model provided biomagnification probabilities associated to the investigated contaminants-for instance, 92% in the case of perfluorooctane sulfonate (PFOS)-that can be interpreted in terms of risk assessment in a precautionary approach, which should prove useful to environmental managers.


Assuntos
Monitoramento Ambiental/métodos , Cadeia Alimentar , Poluentes Químicos da Água/metabolismo , Animais , Teorema de Bayes , Estuários , França , Modelos Biológicos , Medição de Risco/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...